—r—i=Il 1=

Issue #10

January 2024

| | —

Published by:
Timothy Swenson
swenson_t@sbcglobal.net
swensont@lanset.com

ZXzine is published as a service

to the Timex/Sinclair

community. Writers are invited

to submit articles for

publication. Readers are invited

to submit article ideas.

Created using Open
Source Tools:

- OpenOffice
- Scribus

- Gimp

- S7Z81

- Zesarux

Copyright 2024
Timothy Swenson

Creative Commons License
- Attribution
- Non-Commercial
- Share-Alike

You are free:
- To copy, distribute,
display, and perform

the work.

- To make derivitive
works.

- To redistribute the
work.

Table of Contents

Editorial

TimeMachine on Zesarux

Assembly Parameter Passing

Two Books on BASIC

Lunar Lander

Comparing ZXbasic and
TimeMachine

7X81 "Mouse"

Mandlebrodt on the T/S 2068

0S-64

11

Editorial

I've written enough articles for another issue of
ZXzine. Hopefully readers will find them
interesting.

At the Timex/Sinclair User Group zoom meetings
there has been discussion of a printed magazine
with ZXzine suggested as the source. I am hoping
to get others to write for this print version to make it
more encompassing of the T/S scene.

It is unclear if a set number of copies will be printed
or if we will go the print-on-demand route. This is
still something that is to be explored.

If you have an article idea or you have some articles
that you would like to see, please let me know.
There is no set date on when the print version will
appear, or exactly how it will appear, but the first
step is to get the articles written.

TimeMachine on Zesarux

I thought I would take another crack at
TimeMachine, the Basic compiler for the T/S 2068
and with some pointers from David Anderson, I was
able to get it working. Here is how I got it working
on Zesarux.

TimeMachine is available from David's Website
(www.timexsinclair.com). TimeMachine is a T/S
2068 port of Hisoft BASIC for the ZX Spectrum.
The Hisoft BASIC manual can be found online via
a Google Search.

First, there are some changes that need to be made
to Zesarux. When loading a tape, the default
behavior is to do a reset and then load the program.
With TimeMachine loaded above RAMTAP, the
reset wiped it out.

In the Zesarux menu, go to Settings -> Storage ->
Autoload Medium. Once this is set, when you load
a tape, you have to use the LOAD command to load
the program. Normally I like the autoload feature,
but it won't work with TimeMachine, so I know to
set it when running TimeMachine.

When saving with Zesarux, the Output tape must be
set. In the menu, go to Storage -> Tape and select
Output Tape. There you can browse to find the right
file, or you can hit Tab twice and then enter the
name of a new file.

With the issues of Zesarux out of the way, on to
TimeMachine.

Load TimeMachine through the normal process.
Once it loads and the initial screen is drawn, type R
to run the program. The screen will clear and
TimeMachine is ready. Use the Zesarux menu to
select the input file with the program to compile.
Then type LOAD "" to load the program.

TimeMachine needs two compiler directives to
know where to compile. The directives are stored in
a REM statement. The first directive is to tell the
compiler where to start compiling. The Hisoft
manual has the compiler directive as:

10 REM : OPEN #

But TimeMachine needs a "!" instead of a ":".

10 REM ! OPEN #

The "OPEN #" is the keyword, not just the text. At
the end of your program is another compiler
directive, telling the compiler where to stop:

XXX REM ! CLOSE #

I created my program with zmakebas, and it did not
tokenize any of the lines in the REM statements, so

I had to manually enter the compiler directives once
the program was loaded.

The next step is to compile. Just hit the * key and
then C and the compiler will start. The screen will
look odd and stop. Just hit space to have the
compiler move on. Another odd screen and hit the
space bar again and you are done. There will be
text on the screen about the compilation, how many
bytes is the compiled program and the commands to
SAVE and LOAD the program.

With my program, it was stored at 60831 and was
2915 bytes. To save to a TAP file, I created a new

==

output file and then typed:

SAVE "XXXX"CODE 60831,2915
Once saved, I reset the emulator and then loaded my
program with the command:

LOAD "XXXX"CODE 60831

And then to run:
RANDOMIZE USR 60831

My program originally would not compile, as I was
using the VAL statement which TimeMachine does
not support. I changed my code to not use VAL and
it then compiled.

After I got that all working, my next step was how
to create a loader for the compiled program. The
virtual tape drive on Zesarux is a streaming device
and not random access. If there are three files on
the tape and you load file number 3, you have to
"rewind" the tape to then load file number 1.

The question is how to save a loader program after
the compiler has run, but before saving the
compiled program. Luckily, TimeMachine as the
"*ERASE" command (where ERASE is the
keyword). It deletes the BASIC program and
variables in memory, but does not touch the
compiled program.

Once the program is compiled, I then created a new
TAP file using the Storage -> Tape -> Output
option. I make sure to write down the SAVE
options that TimeMachine showed on the screen
after compilation completed. I then did the
*ERASE command. Now I can type a short loader
program. In my example, the BASIC program was
CTESTI1. The BASIC program was in "ctestl1.tap".
The new output file is "ctestlc.tap”, where C stands
for compiled. The loader program is this:

10 LOAD "CTESTI1C" CODE 65066
20 RANDOMIZE USR 65066

I then save the loader program as "CTESTIL" to
virtual tape. I then type the command:

SAVE "CTESTI1C" CODE 65066,272

Now I have in the file "ctestlc.tap" the virtual tape
files, CTESTI1L and then CTESTI1C. I then deselect
"ctestlc.tap" as the output file and select it as the
input file. Next I LOAD "" then type RUN. It loads
the compiled program and runs it.

Now I can distribute the "ctestlc.tap" file to anyone
and they don't need to know anything about
TimeMachine or that the program is compiled.
They just load the first program on the tape and
away it goes.

Assembly Parameter Passing

I am writing a assembly language routine that needs
to send data back to a BASIC program and to get
data from a BASIC program. Getting data from the
routine is fairly simple if it a single value. Getting
data to the routine is more complex as the USR call
does not allow for arguments. This article explores
two ways to get data back and forth from assembly
to BASIC.

The Assembly Language Routine

Without going into too much detail, the routine
needed to send 2 numbers back to BASIC and then
have BASIC send 2 numbers to the routine. The
numbers are the line and column for a screen
location. The process I used to get the data into and
out of the assembly routine is dependent on just
needing two numbers and esp. screen location
numbers. If I needed different data, I might go a
different route.

Getting Data to BASIC

When making a USR call like this:
LET A = USR 16514

The contents of the BC register pair is loaded into

the variable A. My need was two numbers that |

knew would be only 8-bit, I could use the B register
for one number and the C register for the other. I

aEOE =

just had to take the 16-bit number returned by the
routine and break it into two 8-bit numbers.

The test assembly routine was this:
LD B,15
ID C,25

RET

The two values were loaded into the appropriate
registers and then the routine returned to BASIC.

The BASIC program to get the data was this:

1 REM #######

2 LET A = USR 16514
3 LET B = INT (A/256)
4 LET C = A-(256%*B)

The REM statement was there as a place to put the
assembly language routine. Lines 3 and 4 break
down the 16-bit number into the original two 8-bit
numbers.

The assembly language routine is compiled with
Pasmo into a .bin file and not a .P file. The BASIC
program is converted into a .P file with zxtext2p. |
then use dd to write the .bin file into the area of
the .P file where the REM statement is.

The .P file is then loaded into an emulator, ran and
the program shows the two values listed in the
assembly program. In the zip file this is passtest].*

Getting Data from BASIC

Looking through the ZX81 system variables, |
found S-POSN. It stored the column and line
numbers from the last print statement. To get an
exact pair of numbers, PRINT AT can be used to get
the data needed into S-POSN. The BASIC program
was this:

1 REM ##.......
2 PRINT AT 10,15;
3 LET A = USR 16514

Normally the "LET A = USR" line is used when you
want to get data back. Other way of calling the
routine is "PRINT USR", but the return value

from the routine will be printed on the screen. That
is not what I wanted.

The assembly language part was a little more
complicated:

PRINTEQU $0010
PRINTAT EQU $08f5
LD A, ($4039)
ID C,A
LD A,33
SUB C
LD C,A
LD A, ($403R)
LD B,A
LD A,24
SUB B
LD B,A
CALL PRINTAT
LD A,$08
CALL PRINT
RET

In playing with S-POSN, I found that the value is
not really the value set by PRINT AT. When I did
PRINT AT 0,0, the value in S-POSN was 33 and

24. As I incremented the numbers for the PRINT
AT, the values in S-POSN decreased. To get the real
value that has been set by PRINT AT, I had to
subtract 33 and 24 from the S-POSN values.

With Z80 assembly language, subtraction is only
allowed with the A register. There is also a
limitation on which registers can have data from
memory copied to them. This meant that I had to
get the S-POSN values into A, then copy to another
register. Then load A with either 33 or 24 and then
subtract B or C from A to get the value that I
needed.

The routine then just prints a grey character on the
screen at the location of values sent from BASIC.
In the zip file this is passtest2.*

An Alternative Process
Another way to do this is put the values needed into

specific memory locations. BASIC can PEEK to
get the values and POKE to pass the values. I've

EOE =

been using a REM statement as a safe place for the
assembly routine, it is also a safe place to store the
values. The simplest location is the very beginning
of the REM statement, which shifts the start of the
assembly routine by two bytes.

Passing from Assembly to BASIC

The assembly routine just loads values into the A
register and then moves them into the memory
locations:

DEFB $00

DEFB $00
LD A,15
LD (16514),A
LD A,25
LD (16515),A
RET

The BASIC program calls the assembly routine and
then PEEKSs the values:

1 REM 12345678901234
2 let a = USR 16516

3 let a = peek(16514)
4 let b = peek(16515)
5 print a

6 print b

In the zip files, this is passtest3.*
Passing from BASIC to Assembly

To get the values from BASIC to assembly, the
values POKEd into the memory locations:

1 REM 12345678901234567890
2 poke 16514,15

3 poke 16515,25

4 let a = USR 16516

Once the values are stored, the assembly routine is
called, which takes the values and print a grey
character at the PRINT AT location:

DEFB $00
DEFB $00

LD A, (16514)

LD B,A
LD A, (16515)
LD C,A

CALL PRINTAT
LD A,$08
CALL PRINT
RET

In the zip file this is passtest4.*

Two Books on BASIC

In the last year I picked up two books by Mark
Jones Lorenzo, "Endless Loop: The History of the
BASIC Programming Language" and "Gosub
Without Return: Between the Lines of the BASIC
Programming Language."

The first book is a straight forward book
documenting the history of BASIC, from its
inception at Dartmouth and the design goal of it

being
used by . e
non- = 3%
E_] E_ 3
computer * *
students, * *
to the end [-
days of 2 *
BASIC in : THE HISTORY OF THE :
»* mF, L F S *
the 90's. [N Ie 1 = Al -
»* PROCRAMMING LANGUAGE
k3 k3
The book [: : *
also talks [| Madnnests *
about the x E 11=purpass | *
: E ymbolic E :
many : E nstruction E :
versions * : H &
) i i)
of BASIC * ' ' *
and how a i -
lot varied] 4
from * MARK JONES LORENZO *
: Author of Ok and :
standard = *
BASIC,

mostly because of the limited memory of early
computer systems. The designers of BASIC did not
copyright the language as they wanted it to spread
and be a benefit of all. This helped lead to the many
dialects of BASIC.

EOeE

The book focuses on the popular BASICs of the
time, Micrsoft BASIC, GW-BASIC and later
QBasic. The early microcomputers had different
BASICs from many authors, but as larger computer
companies came onto the scene, quite a number of
them contracted with MicroSoft for their version of
BASIC. As awful as MicroSoft BASIC was, it
dominated the market.

There is a page or two that talks about BASIC for
the BBC Micro and SuperBASIC for the QL, but
nothing really of Sinclair BASIC.

For someone into retro-computers, I found the book
an enjoyable read. There was a lot I did not know
about the early days of BASIC. The books is well
researched and well written. The book is a
paperback and appears to be published via print on
demand. The book came out in 2017, but my book
was printed in late 2022. I like the physcial size of
the book. Small enough the comfortably hold in my
hands to read.

The second book "Gosub without Return" is larger
than the first in both the number of pages and the
format size. This book is harder to classify than the
first. I get the impression that as the author was
researching

: CHEUH bOOk’ e
i that did not
quite fit the

HETUHHWMM

LA went into the

the material
WITHOUT
premis of the
Ml second book.
BETUEEN THE LINES OF THE

BAS 10

PROGRAMMING LANGUAGE

The chapters
not are well
connected
but they are
still about
BASIC. One
chapter is
about BASIC
standardization, another on the origins of TI
BASIC, another on Sister Mary Keller, who some
say helped create BASIC, etc. There are two
chapters on "The UK Connection" that has more

Author of

S 3 M W M W W W W M W W

details on British computers. The second chapter of
the UK connection is on Usborne books. There are
so many references to other books that you could
spend weeks tracking them down and reading them.
Like the first book, this one is very well researched.

Since the book is not a history that is trying to tell a
complete story, it is easy to just skip a chapter if it
does not interest you. The first book was more
interesting, but tthe second one as still a good read.

The books are cheap, with Amazon listing the first
book for $10 and the second one for $14. 1 found
them both enjoyable and to recommend them to
anyone still proramming in BASIC.

Lunar Lander

Recently the book "50 years of Text Games" by
Aaron Reed, was released via Kickstarter and I was
able to get a copy. The book starts off with some of
early and better known text-based computer games
(at least for someone that got into computers in the
early 80's).

The second game documented is ROCKET, the
original name for a lunar lander game. It was
written in late 1969 and published in January 1970.
After watching the Apollo 11 lunar landing, Jim
Storer, a high school student, thought that it could
be turned into a computer game.

With access to a PDP-8, Storer wrote the program in
the FOCAL language. FOCAL stands for
“Formulating On-line Calculations in Algebraic
Language” as was an interpretive language where
the keywords were reduced to a single letter, since
the PDP-8 was a small memory machine. In
FOCAL here is the core part of the program:

03.10 I (M-N-.001)4.1;
.001)2.1;S S=T

03.40 I ((N+S*K)-M)3.5,3.5; S
S=(M-N) /K

03.50 D 9; I (1I)7.1,7.1; I
(v)3.8,3.8;I (J)8.1

3.80 D 6; G 3.1

I (T-

Line 03.10 starts with I which means IF, so in

aEOE =

BASIC it would mean:
IF (M-N-.001) < 0 THEN GOTO 4.1

The game was published in the DECUS Program
Library. Later David Ahl converted the program to
BASIC about 1971 and published it in EDU, the
DEC newsletter. It was later published in "101
BASIC Computer Games" in 1973 as ROCKET and
as Lunar LEM Rocket in "BASIC Computer
Games" in 1973 and in the more known 1978
edition.

]
m
0
=X

T =

] 120 @ SEQQ 16580
1@ 1l1@ 459 3537 15008
2 1@ 13553 472 15522
] 28 4204 406 15206
4@ Sl 2256 3338 14580
=1 T2 1312 3269 14000
(=1 63 1399 3198 13500
7a 5S4 2541 3125 1080
=1%] 45 3I@6 2938 12000
i=1 38 &79 2742 11000
108 o8 4535@ 2538 1086
11@ 24 350 2325 SRaa
12@ 17 4561 2182 Soaa
130 12 4156 1586 ERaa
14@ = 8=23 1015 428a
15@ 5 3511 rasls Soaa
16@ S 586 425 ZRaa
178 4 1973 101 loaa
15@ 4 7VEZ B3 Soa

I thought it might be a good idea to get the game
running on the ZX81. I know there are a few Lunar
Lander games for the ZX81, but all of them a
graphical. I wanted to hark back to the early
version.

"Basic Computer Games" is a book that [used to
have and is available from the Internet Archive. The
downloaded version of the book does not have the
best quality graphics, so I had to view the program
directly on the Internet Archive. With the lower-res
scan of the PDF it was hard to say if a character was
a"*"ora"+".

The program required some modification as the
7ZX81 does not support multiple statements on a
line. I had to adjust the display to fit the ZX81 and
add a pause statement to keep the screen from
needing a "CONTINUE" after it filled up from the
opening of the game.

I ran the program using the example given in the
book and I got the same results, so I think it is
working properly.

After the initial instructions screen, four items are
printed on the screen; Seconds, Elevation of the
lander (in miles and feet), the speed of the lander
and the amount of fuel left. After this is printed, the
cursor will appear at the bottom of the screen ready
for numeric input. Enter the amount of fuel that you
want to burn for the next ten seconds. Once that
calculation is done, another set of numbers is shown
and the computer is ready for another amount of
fuel to burn. The input can be from 8 to 200, with
200 having the rocket motors at full blast.

There has to be a balance of fuel and descent speed.
If the lander comes in too slow, it can run out of
fuel. Wait too long to kick in the engine and it can
be too late to slow down the lander.

Comparing ZXbasic and
TimeMachine

There are two available BASIC compilers for the T/
S 2068, TimeMachine and ZXbasic. TimeMachine
is native on the T/S 2068 and ZXbasic is a cross
compiler, written in Python, that runs on Windows,
Linux and MacOS. This article will do a short
comparision between them.

7. X BASIC Language Support

Both compilers do not compile the full syntax of ZX
Basic.

TimeMachine is based on Hisoft BASIC for the ZX
Spectrum. The documentation for Hisoft BASIC is
mostly accurate for TimeMachine. There is a secion
of the Hisoft BASIC user guide that details the the
limitations of the compiler. It does not allow for
VAL AS, but VAL "12345" is allowed. Arrays of no
more than 3 dimensions is permitted. BREAK key
is disabled. A number of immediate commands
(CLEAR, CONTINUE, ERASE, FORMAT, etc) can
not be compiled.

ZXBasic compiles most Sinclair BASIC, but some
commands are totally different. All inputis a
string. VAL must be used to convert to a number:
u$ = input(10)
year = val(u$)

input(10) means to get no more than 10 characters

= = —

of input.

ZXBasic is also based on FreeBASIC, so it can
handle a more structured version of BASIC. IF
statements can have multiple lines and allows for an
ELSE statement. Besides FOR..NEXT it also
supports WHILE..END WHILE and DO...LOOP.
Line numbers are not needed, so it uses labels for
GOTO and GOSUB statements.

Steps to Compile

TimeMachine takes a number of steps to compile a
program. The program is first written with a text
editor, then converted to a TAP file with zmakebas.
The program is then loaded into an emulator where
TimeMachine was first loaded. The program is
compiled, and then saved out to another .TAP file.

ZXbasic takes the program in the text file and
compiles it to a . TAP file that is ready to run.
Overall the process with ZXBasic is simpler and
faster.

Speed

I did a couple of speed comparisons with the two
compilers. The first program is a simple print to the
screen test:

10 CLS

20 FOR X=1 TO 31
30 FOR Y = 1 TO 21
40 PRINT ".";

50 NEXT Y

60 NEXT X

For TimeMachine additional lines where added for
the compiler directives. Nothing was needed for
ZXbasic.

Once compiled, I ran both programs. For
TimeMachine it took about 2-3 seconds for the
screen to fill up. It was slow enough that you could
see the progress. ZXbasic was about 1 second. It
was too fast to see the progress. Running the
program in BASIC took about 6 seconds.

The second program that I tested with is my cellular
automata program that generates some nice
graphics. In BASIC it is achingly slow. With

TimeMachine it was faster, but still fairly slow.
With ZXbasic, it was not quick, but it was the
fastest of the three programs and was not too slow
to watch.

Comparing

If I had to choose between the two compilers, |
would go with ZXbasic. It produces faster code and
is only a single step to get the end result.

I did find a bug in ZXbasic with printing a floating
point number. Once it prints the number the screen
gets funny and the program hangs. I tested this out
on the original Spectrum version of ZXbasic and the
issue is still seen there.

For some programs that [was going to do, not
printing out a floating point number is a show
stopper, but it should be fine for other
programming.

There are a number of ZXBasic programs written
for the Spectrum that could be ported to the T/S
2068 if the source code is available.

7Z.X81 "Mouse"

Something recently got me thinking about having a
mouse on a ZX81. At first I was thinking of a
traditional mouse with a movable arrow. This might
be possible with hi-res graphics, but I've never tried
using hi-res graphics.

I though through about how a mouse works using
DOS, which uses a text-based cursor which moves
about the screen like a mouse. The cursor is just a
text character. Something like this could work on
the ZX81.

I had been working on assembly program that took
keyboard input and moved a character around the
screen. I was thinking I might eventually create a
game, but the mouse idea was perfect for the
assembly that I had already done.

Initially I was thinking about making the cursor a
specific character and I would have to save the
existing character that was on the screen before
printing the cursor. Then I had the idea of inverting

O

the character on the screen. Adding 128 to any
character will create the inverse character. Adding
another 128 will get you back to the original
character, because the 8-bit register will "roll" over
and the carry bit can be ignored.

I created a proof of concept program in pure
assembly. The program drew some characters on
the screen, drew the cursor and then the user could
move the cursor around the screen.

Originally I had the program use the arrow keys, but
that was not too convenient. I then switched to the
Unix "arrow" keys, the same ones used with VI or
"less":

h - left

j - down
k -up

| - right

These were keys that [have been using for years, so
I went with them. The mouse "button" to select was
originally "0" but I changed it to "enter". If you are

using your right hand to move the cursor it is pretty

easy to hit the enter key.

Once the proof-of-concept was completed, the next
step was to create an assembly routine that could be
called from BASIC. The routine would move the
cursor around the screen and when "enter" was hit,

-2 8 0 F =
-2 8 0 F =

it would return to BASIC passing the last location
of the cursor. Then the BASIC program could take
some action based upon where the cursor was.

The routine is in mouse.asm. A simple BASIC
program is mousetest.bas. The assembly program

was compiled into a .bin file with PASMO. Once I
knew the size of the .bin file, I put a REM statement
in mousetest.bas that is large enough to hold

the .bin file. I "compiled" mousetest.bas with
zxtext2p. I merged the .bin file with the .P file with
the tool "dd", like this:

dd conv=notrunc seek=121 bs=1
if=mouse.bin of=mousetest.p

Initially the program did not work, but when I
reached out to the Timex/Sinclar mailing list, Ryan
Gray pointed out that I was missing an ORG
statement.

There is a delay built into the routine. Without it
the cursor is way too fast. Depending on the
platform being used, the delay might need to be
changed to be longer or shorter.

Mandlebrodt on the T/S 2068

[David Anderson, who runs www.timexsinclair.com,
recieved a box of material from SyncWare News for
archiving. In the box was a number of submitted
articles that did not get published. David has sent
me this article and program from Gerald W.
Goegelein, originally submitted in Feb. 1987.
David also ran the program, provided screenshots
and a .tzx file with the program and data file, where
you can GO TO 1000 to get directly to the menu
and then load the data file. - Ed]

In looking for something to do I found myself
reading back issues of SyncWare News for articles
passed over the first time around. The Mandelbrot
Plot program in Volume 3 Number 5 caught my eye.
Those who read the article by Mr. Nachbaur will
remember that the Mandelbrot program creates
"computer art", mathematically created patterns
otherwise known as fractals. These are in endless
detail, many are very beautiful and many have
smaller and smaller detail within themselves to
explore. This looked interesting, so I entered the
original listing to see how it would work.

After running it on my ZX-81 it became apparent
that: 1) the screen display obtained using the
"PREVIEW" option bore little resemblance to the
printout, and 2) the printout consumed a lot of

aEOE =

expensive paper (not to mention the amount of time
to do the print!). These discoveries prompted me to
convert the program to run on the 2068 where it
would be possible to properly display the picture
without printing it.

MAIN MENU

=
£
g

As the author of the program (Mr. Nachbaur) noted,
the 2068 does not have enough RAM available to
support the 192X192 array. I have changed the
array to 160X160 along with all code concerned
with the array size.

A plus from converting to the 2068 is that now you
are not limited to the characters used by the ZX-81,
but can design your own to make the printout
picture look just as you wish. Most of you have
your own UDG designer programs so [will not go
into their creation here. In case you did not read the
original article, when you have the array printed ten
character/UDG's are used to create the 'gray scale'
of the picture. Using different characters or UDG's
has a great effect on the result and the artistic
minded will enjoy the personalized touch which can
be achieved this way.

Enter my listing and save it to tape before
attempting to RUN it. This is always good practice
and in the event of a crash will save loss of all of
your work. UDG's you might want to use should be
under letter A thru I inclusive. Your A UDG should
be the lightest, that is the least black showing. The I
should be completely black, or the darkest. The idea
is to create a progressively darker character as you
approach 'I'. These UDG’s are then used to create
the 'gray scale' when printing the hardcopy picture
at the end of a run. One of these is selected based on
the value of each location in the 160 X 160 array,
lower values are the lightest, highest values darker.

One of my goals in doing this conversion was to be
able to see the picture on the screen without the
expense (and time) of printing it. Try the PREVIEW
option and you will see a close resemblance to the
printout with what appears to be elevation lines
such as used in a topographical map. I liked the
display with the lines as it gives the illusion of
depth and visualizes the slopes in the data. Now you
can get a good look at the array in a lot less time
and possibly be encouraged to explore the
Mandelbrot "world" for yourself.

My display is built by scanning the P$ array and
using the array address to address a plot position on
the screen. The picture is built starting at the lower
left hand corner (which I call the origin), scanning
across horizontally to the right. Subsequent lines
build one above the other until the picture ends up
with 160 dots across and 160 lines high.

Deciding whether to plot or not (that is the
question!) is critical to how the finished picture will
look. I experimented quite a bit to create something
which would give you a good representation of
what the printout would look like. Line 4030in my
code decides to plot or not, the decision is based on
three things. First the slope of the data is tested, if
there is a change of 1 between the previous location
(one location to the left) a dot will be plotted. The
change can be either positive or negative, but must
be only by 1. Next the same test is performed in the

vertical axis by comparing the data at the current
address to that of the point directly below. This is
done to produce a consistent display which is
insensitive to the orientation of the shapes being
represented. Lastly, if the data is 128, the highest

= =, —

possible level, a dot will be plotted.

Try modifying the tests in line 4030 and see how
different the result will be. I tried fancy schemes of
testing for levels or looking for slopes greater than
1, but after all was said and done ended up with the
code you see in the listing. For fun, try changing
line 4030 to look for only rising data slope, "IF
CODEP$(0O,P)>CODE P$(O,P-1) THEN GOTO
4130". Experiment with testing for other things and
see what results.

Taking advantage of the ability of the 2068 to save
array files I added two
options to the Mandelbrot
program. Option 7 will save
the array, all of the program
variables (so you can save in
mid run and continue later)
and the date to help keep
track of multiple files.
Option 8 reloads everything
and you can pick up where
you left off in cases where
the array computation was
not complete. I did not save
the "settings" for the printout
thresholds, you may wish to expand on what I did to
include them by enlarging the numeric array where
the other variables are saved.

One feature | haven't mentioned is printout of the
screen display generated by the PREVIEW option.
Have your 2040 printer on and enabled and upon
completion of the plotting a copy will be printed
along with the coordinates you entered at the start
of the run. The current loop count of variables M
and N are also printed to let you know where things
are in the event you do a PREVIEW before the
array computation is completed. Sometimes you can
see enough in a partially complete array to know
whether or not to let it continue with the current
coordinates. When you initially start a run, the
coordinates entered will also be printed if the printer
is on at that time. This makes a good reference to
remind you what numbers you entered.

In exploring the plots I discovered that you can
view the whole "world" in one picture. All other
features exist within the "world" which you can see
with these coordinates: A=-2.1,B=-2.1,S=4.95.1

== (=]

have not seen any other features outside of this
"world" and so far as I know this is all there is with
the formulae used in this program.

Use the coordinates given in the previous paragraph
and print the result. With a ruler draw two lines
bisecting the outer circle on the printout. The lines
represent the "zero" lines or coordinates for the A-
CORNER (horizontal) and B-CORNER (vertical).
This can be proved by computing the coordinates of
A=0, B=0, s=5. The result will have the lower
left hand corner of the picture (the origin) at the
intersection of the lines you drew on the first
printout. Knowing this
will give you a way to
navigate around this
Mandelbrot "world".
Making the first or "A"
coordinate positive
moves the origin of the
picture to the right of the
vertical line, negative to
the left. The
"B"coordinate works the
same way, but this time
a positive number moves
the origin above the
horizontal line on your first picture, a negative
number move it below.

With a little practice you can come very close to
being where you want to explore in the Mandelbrot
world. If you explore around the edges of the
"black" areas you will see the canyon lands as I call
them. With a little thought you can even draw a grid
over the "world" which will help you navigate with
some precision.

Once You get the origin of the picture at a
interesting point you can magnify the features by
using a smaller "S" number. The "S" number is the
relative size of the result compared to the
Mandelbrot "world", the smaller number gives you
a smaller piece of it to fill the screen.

By the way, it is possible to speed this program up
by compiling it with one of the commercially
available compilers. I was successful using
TIMACHINE, but this required some restructuring
to make it work. One disappointment with the

compiled code was that there was little increase in
=

the computation of the array. This code uses the
floating point routines in ROM which cannot be
speeded up.

0S-64

I thought I would tinker with Zebra's OS064
catridge (as a DOCK file) with Zesarux emulator. 1
have not used it so I wanted to see what it could do.

Loading the .dck file is easy enough with Zesarux,
just go to the Storage menu, then Timex Cartridge,
then Insert Cartridge, and then select the .dck file.
The emulated system needs to be reset, and that is
done via the Debug menu option. Once it is reset,
the OS-64 cartridge kicks in and the system is
changed to Mode 6, the 64 column mode. Despite
it being 64 column mode, there is still only 22 rows
on the screen, just like the normal 32 column mode.

The mode is monochrome, where only one INK and
PAPER color is possible. If setting the PAPER
color, the INK is set by the system. The same is
true if setting the INK, the PAPER color is

choosen. The border color is always the same color
as the paper. The default PAPER with OS-64 is
black with white INK.

Using Zesarux, the 64-column text is pretty clear. |
think a good composite monitor is needed if using a
real T/S 2068, as a TV does not have the resolution

for this mode.

Mode 6 is really only for text. Graphics are
available, but they are not hi-res and are the
standard 256x192. FLASH does not work in this
mode.

In normal mode, there is 38654 bytes of free
memory. In 64 column mode there is 33727 bytes
of free memory, a loss of 4927 bytes.

One of the main features of OS-64 is that it fixes a
number of issues that the main ROM has with the
64 column node. With OS-64, BASIC defaults to
64-colum node, where LIST and PRINT statements
work just fine.

BASIC programs will work, but they are using
multiple INK or PAPER commands, then the screen

will flicker as the whole screen changes for each
INK statement. This might make those program
difficult to use with OS-64.

There were a number of program released to utilize
0S-64, but the only one that has been archived is
the OS-64 Utilities #1 tape. Most of the programs
on the tape are printer drivers. There is EDITOR64,
a limited text editor written in BASIC. It essentially
turns the whole screen into a text document that can
be edited by moving the cursor around and adding
or deleting text. The first time [ran EDITOR64 I
has just listed the program. Instead of clearing the
screen before the editor started, it started
immediatly and I was able to "edit" the listing on
the screen.

The editor does not seem to allow more than one
page of text, nor do I see anyway to save the text to
tape. I think this was more of a proof-of-concept or
a demo than a full editor.

0S-64 does support user defined graphics (UDGs).
I got an example program from the Spectrum
manual that sets up a PI symbol as a UDG. When
printed to the screen, it showed up. This means that
limited games are possible with OS-64. I could
imagine a monochrome version of Space Invaders
being played.

I also tested some assembly programs. The first one
I tested was a simple "print a string" that used the a
ROM call to print the string. When it ran, it
switched back to 32-column mode, back to 64-
column mode and then basically crashed. I'm
guessing there was something in the ROM call that
was not compatible with 64 column node.

The second assembly program I tried used RST 16
to print characters to the screen and it worked. I'm
guessing that the normal PRINT ROM routines do
not work with OS-64. It is easy enough to not use
the ROM routines, or it might be possible to see
where they exist in the OS-64 ROM. Since the OS-
64 ROM is just the original HOME ROM, modified
and copied to the cartridge, some enterprizing soul
could disassemble the OS-64 ROM and see what
what locations are the new PRINT routines.

= =T |

